Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations

نویسندگان

  • Nicolas Crouseilles
  • Shi Jin
  • Mohammed Lemou
چکیده

We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to capture accurately the solutions without numerically resolving the high frequency oscillations in both space and time. Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and other highly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds the oscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Geometric Optics method based multi-scale numerical schemes for a class of highly-oscillatory transport equations

We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to capture accurately the solutions without numerically resolving the high frequency oscillations in both space and time. Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and other highly oscillatory waves. Our ∗Inria, IRMAR, University of Rennes 1, Re...

متن کامل

Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations

This work is devoted to the numerical simulation of nonlinear Schrödinger and Klein-Gordon equations. We present a general strategy to construct numerical schemes which are uniformly accurate with respect to the oscillation frequency. This is a stronger feature than the usual so called “Asymptotic preserving” property, the last being also satisfied by our scheme in the highly oscillatory limit....

متن کامل

Numerical solution of nonlinear SPDEs using a multi-scale method

‎In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets‎. ‎The method combines implicit collocation with the multi-scale method‎. Using the multi-scale method‎, ‎SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain‎. ‎The stability and c...

متن کامل

Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise

We introduce a class of numerical methods for highly oscillatory systems of stochastic differential equations with general noncommutative noise. We prove global weak error bounds of order two uniformly with respect to the stiffness of the oscillations, which permits to use large time steps. The approach is based on the micro-macro framework of multi-revolution composition methods recently intro...

متن کامل

Multi-revolution composition methods for highly oscillatory differential equations

We introduce a new class of multi-revolution composition methods (MRCM) for the approximation of the Nth-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory systems of differential equations, the technique benefits from the properties of standard composition methods: it is intrinsically geometric and well-suited for Hamiltonian or divergence-fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016